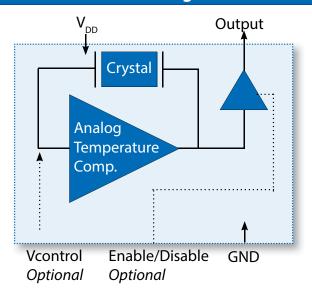


Vectron's VT-803 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, clipped sine wave or CMOS output, 5th order analog temperature compensated oscillator, operating off a 2.8 to 5.0 volt supply in a hermetically sealed 3.2x5 mm ceramic package.

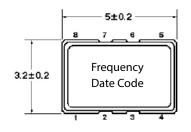

Features

- Clipped Sine Wave or CMOS Output
- 10.000-52.000 MHz Output
- ±100 ppb Temperature Stability
- Optional Enable/Disable Function
- Optional VCXO
- Fundamental Crystal Design
- Gold over nickel contact pads
- Hermetically Sealed Ceramic SMD package
- Product is compliant to RoHS directive and fully compatible with lead free assembly

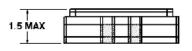
Applications

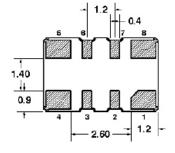
- Stratum 3
- SyncE
- 1588
- Femto Cells
- Base Stations
- IP Networking
- GPS
- Point to Point Radio
- Manpack Radio
- Test and Measurement

Block Diagram



Specifications


Table 1. Electrical Performance, Clipped Sine Wave Option						
Parameter	Symbol	Min	Тур	Max	Units	
Output Frequency,1 Ordering Option	f _o	10		52	MHz	
Supply Voltage ² , Ordering Option	V _{DD}	+	2.8, +3.0, +3.	3, +5.0	V	
Supply Current, 10-20.000MHz 20.001-52.000MHz	I _{DD}			2.0 3.4	mA	
Operating Temperature, Ordering Option	T _{OP}	-10/7	0, -20/70, -30	/85, -40/85	°C	
Stability Over Operating Temperature ³ , Ordering Option		±0.100, ±0.2	200, ±0.280, =	±0.500, ±1.0, ±2.0	ppm	
Initial Accuracy, "No Adjust" Option ⁴				±1.5	ppm	
Power Supply Stability, ±5% change				±0.05	ppm	
Load Stability, ±10% change				±0.05	ppm	
Aging				±0.5	ppm 1st yr	
Stability, temperature and 24 hours⁵				±0.37	ppm	
Total Stability⁵				±4.6	ppm	
Pull Range, Ordering Option	PR		±5, ±8, ±10, ±12			
Control Voltage to reach Pull Range		0.5		2.5	V	
Control Voltage Impedance		100			Kohm	
Output Enable/Disable ⁶ , Ordering Option Output Enabled Output Disabled (high impedance output)	V _{IH}	0.2*V _{DD}		0.8*V _{DD}	V V	
Output Level	V _o p/p	0.8	1.1	1.3	V	
Output Load				10K II 10pF		
Phase Noise, 26.000MHz 10Hz 100Hz 1kHz 10kHz 10kHz	0 _N		-91 -117 -136 -150 -158		dBc/Hz	
Start Up Time	t _{su}			2	ms	


- 1. The Output is DC coupled.
- 2. The VT-803 power supply pin should be filtered, eg, a 10uF, 0.1uF and 0.01uf capacitor.
- $3. \, Not \, all \, stabilities \, are \, available \, over \, all \, temperature \, ranges. \, Measured \, at \, mid \, Vc \, for \, parts \, with \, frequency \, tuning.$
- 4. After 2 IR reflows and 24 hours.
- $5.\pm100,\pm200$ and ±280 ppb temp stability parts, all inclusive with 10 years aging.
- 6. Output is Enabled if E/D is left open.

Outline Drawing

Dimensions in mm

Table 2. Pinout							
Pin#	Symbol	Function					
1	NC or V _c	No Connection or TCXO Control Voltage					
2	NC	Make No Connection					
3	NC	Make No Connection					
4	GND	Ground					
5	OUT	Output					
6	NC or E/D	No Connection or Enable/Disable					
7	NC	Make No Connection					
8	V _{DD}	Supply Voltage					

Table 3. Enable Disable Function (optional)						
Pin 6	Pin 5 Output					
High	Clock Output					
Open	Clock Output					
Low	High Impedance					

Specifications

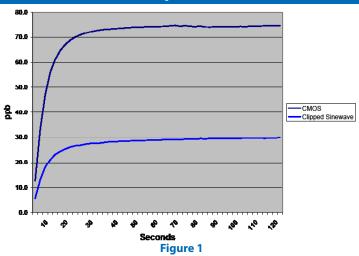
Table 4. Electrical Performance, CMOS Option					
Parameter		Min	Тур	Max	Units
Output Frequency ¹ , Ordering Option	fo	10		52	MHz
Supply Voltage ² , Ordering Option	V _{DD}	+2.8	8, +3.0, +3.3, +	5.0	V
Supply Current, 10-24.999MHz 25.000-39.000MHz 40.000- 49.999MHz 50.000- 52.000MHz	I _{DD}			3.0 3.5 5.0 6.0	mA
Operating Temperature, Ordering Option	T _{OP}	-10/70,	-20/70, -30/85	, -40/85	°C
Stability Over Operating Temperature ³ , Ordering Option		±0.100, ±0.20	0 ±0.280 ±0.5	00, ±1.0, ±2.0	ppm
Initial Accuracy, "No Adjust" Option⁴				±1.5	ppm
Power Supply Stability, ±5% change 10MHz-27MHz, 2.8V, 3.0V, and 3.3V >27MHz-52MHz, 2.8V, 3.0V, and 3.3V 10MHz-27MHz, 5V >27MHz-52MHz, 5V		I		±0.10 ±0.20 ±0.20 ±0.30	ppm
Load Stability, ±10% change				±0.10	ppm
Aging				±0.5	ppm 1st yr
Stability, temperature and 24 hours ⁵				±0.37	ppm
Total Stability⁵				±4.6	ppm
Pull Range, Ordering Option		±	5, ±8, ±10, ±1	2	ppm
Control Voltage to reach Pull Range		0.5		2.5	V
Control Voltage Impedance		100			Kohm
Output Enable/Disable ⁶ , Ordering Option Output Enabled Output Disabled (high impedance output)	V _{IH} V _{IL}		0.2*V _{DD}	0.8*V _{DD}	V V
Output Level Output Logic High Output Logic Low Output Logic High Drive Output Logic Low Drive	V _{OH} V _{OL}	0.9*V _{DD}		0.1*V _{DD} -4	V V mA mA
Output Load				15	рF
Phase Noise, 26.000MHz 10Hz 100Hz 1kHz 10kHz 10kHz			-91 -117 -139 -153 -157		dBc/Hz
Period Jitter ⁷ rms peak-peak			2.5 21.0		ps ps
Start Up Time	t _{su}			2	ms

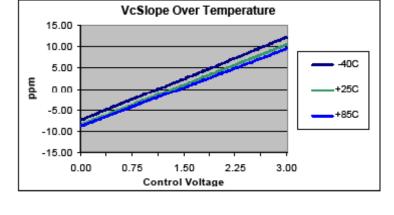
^{1.} The Output is DC coupled.

^{2.} The VT-803 power supply pin should be filtered, eg, a 10uF, 0.1uF and 0.01uf capacitor.

^{3.} Not all stabilities are available over all temperatures. Measured at mid Vc for parts with frequency tuning

^{4.} After 2 IR reflows and 24 hours.


 $^{5.\}pm100,\pm200$ and ±280 ppb temp stability parts, all inclusive with 10 years aging.


^{6.} Output is Enabled if E/D is left open.

^{7.} Measured using a Wavecrest SIA3300C, 90K samples.

Warm Up Time

Frequency versus Vc Over Temperature

The VT-803 start up time is rated at 2ms. Figure 1 shows the Output Frequency versus time in seconds which shows the output reaching a steady state frequency within 60 seconds.

Figure 2

The VT-803 output frequency change versus control voltage is very linear and Figure 2 show the typical performance over temperature.

Allan Deviation, Clipped Sine Wave Output

FREQUENCY STABILITY ь 10^{4} 10^{9} Averaging Time, t. Seconds

Allan Deviation, CMOS Output CHrs 27/8/II Time (050) I

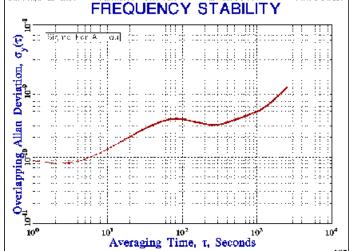
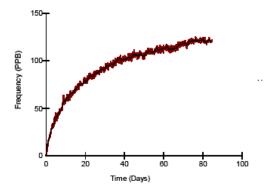



Figure 3 Test Conditions are under room ambient air flow (non insulated conditions).

Figure 4

Test Conditions are under room ambient air flow (non insulated conditions).

Aging

Figure 5

Figure 5 shows an output frequency change of 125ppb typical over 85 days at 85°C which would be equivalent to 125ppb over 2.25 years at 40°C.

Temperature Stability Graph

0.5 0.4 0.3 0.2 0.1 60 -0.1 -0.2 -0.3-0.4 -0.5 Temperature °C

Delta Frequency vs. Temperature

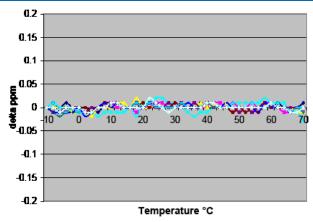


Figure 7

Figure 7 shows the change in frequency reading between every adjacent 2°C readings.

Phase Noise Performance, Clipped Sine Wave

Figure 6

Phase Noise Performance, CMOS

Figure 8

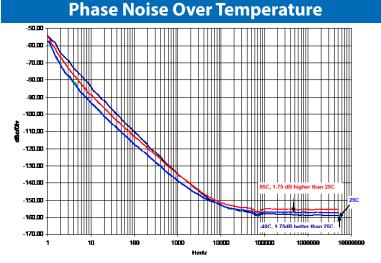


Figure 10

Figure 10 snows the difference in the phase noise at 85°C, 25°C and -40°C.

Phase Noise Over Power Supply Variation

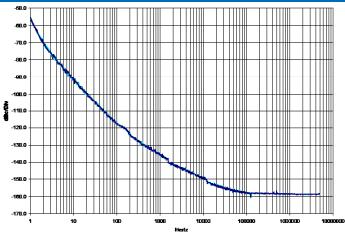


Figure 11 is a phase noise plot at a 2.8, 3.0, 3.3 and 3.6 volt power supply which demonstrates there is no significant change in performance.

VCXO Function

VCXO Feature: The VT-803 is supplied with a VCXO function for applications were it will be used in a PLL, or the output frequency needs fine tune or calibration adjustments. This is a high impedance input, 100 Kohm, and can be driven with an op-amp or terminated with adjustable resistors etc. **Pin 1 should not be left floating on the VCXO optional device.**

Maximum Ratings

Absolute Maximum Ratings and Handling Precautions

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

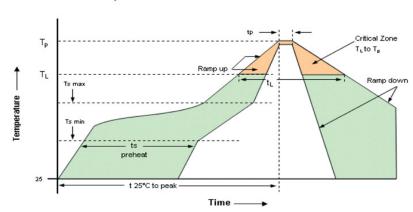
Although ESD protection circuitry has been designed into the VT-803, proper precautions should be taken when handling and mounting, Vectron's employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

Table 5. Maximum Ratings			
Parameter	Symbol	Rating	Unit
Storage Temperature	$T_{_{STORE}}$	-55/125	°C
Supply Voltage	$V_{_{ m DD}}$	-0.6/6	V
Control Voltage	V_{c}	-0.6/V _{DD} +0.6	V
Enable/Disable Voltage	E/D	-0.6/V _{DD} +0.6	V
ESD, Human Body Model		1500	V
ESD, Charged Device Model		1000	V

Reliability

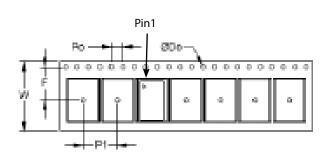
Table 6. Environmental Compliance	
Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002 (1500 G, 0.5 msec)
Mechanical Vibration	MIL-STD-883 Method 2007 (20 G Peak Acceleration)
Temperature Cycle	MIL-STD-883 Method 1010 (-55/85°C)
Solderability	MIL-STD-883 Method 2003 (Lead free solder)
Fine and Gross Leak	MIL-STD-883 Method 1014 (Crystal)
Resistance to Solvents	MIL-STD-883 Method 2015 (IPA solvent)
Moisture Sensitivity Level	MSL1
Termination Finish	Gold (0.3-1.0um) over Nickel
Weight	70 mg
ThetaJC (bottom of case)	6 °C/W

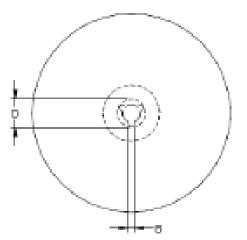
Test conditions: ±2.0 ppm change limit.

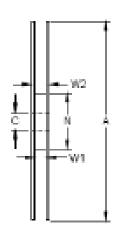

IR Reflow

Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 7. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220°C.

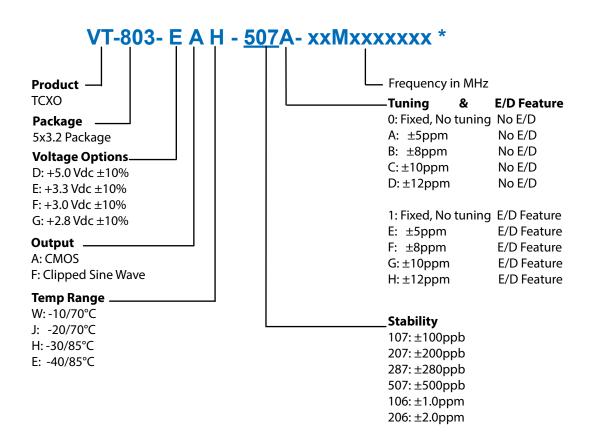

Table 7 Reflow Profile		
Parameter	Symbol	Value
PreHeat Time Ts-min Ts-max	t _s	200 sec Max 150°C 200°C
Ramp Up	$R_{_{\mathrm{UP}}}$	3°C/sec Max
Time above 217C	t _L	150 sec Max
Time to Peak Temperature	t _{25C to peak}	480 sec Max
Time at 260C	t _p	30 sec Max
Time at 240C	t _{P2}	60 sec Max
Ramp down	$R_{_{DN}}$	6°C/sec Max


Solderprofile:



Tape & Reel

Table 8.	Tape and	Reel Info	rmation									
	Tape D	imension	s (mm)				Reel D	imensions	s (mm)			
W	F	Do	Ро	P1	Α	В	С	D	N	W1	W2	#/Reel
12	5.5	1.5	4	8	254	2.5	13	21	100	13.5	17.5	2000



Ordering Information

Table 9. Sta	ndard Frequ	encies (MHz)						
10.000	12.800	16.000	16.384	16.800	19.200	19.440	20.000	20.480	24.000
24.576	25.000	26.000	27.000	28.800	29.792	30.000	30.720	31.250	32.000
33.333	36.000	38.400	38.880	39.000	40.000	48.000	49.152	50.000	52.000

* Add _SNPBDIP for tin lead solder dip Example: VT-803-EAE-2870-40M0000000 SNPBDIP

Revision Date	Description
Nov 4, 2013	Updated product capability chart (Table 9 & 10). Changed VI Asia contact information.
Jan 7, 2014	Added "temperature stability measurement at Mid Vc for parts with frequency tuning option". Removed Delta 1s Frequency Plot.
Feb 18, 2014	Added temp stability measurement condition on parts with Vc feature. Changed Vectron logo and Hudson contact information.
Sep 3, 2014	Modified Package Drawing Orientation, added tuningl slope (positive), red bullet in Capability Chart
June 28, 2018	Add: E/D function, E/D specifications, E/D Table. New Frequencies, Stratum3/SyncE, ±4.6ppm overall stability, ±0.37ppm temperature plus 24 hours (for stabilities <= ±280ppb), weight and thetaJC. Updated CMOS load and power supply stability. Update test conditions and clipped sine wave current limit >26MHz to 52MHz. Add new Table 3; Enable/Disable Table. Deleted Capabilities Tables 9 and 10. Add _SNPBDIP ordering option and example. Change Vectron logo to Microsemi/Microchip.
Sep12, 2018	Updated contact information, added (bottom of case) to the thetaJC parameter, added max swing in clupped sine wave /Table1

Microsemi Headquarters

Microsemi Headquarters
One Enterprise, Aliso Viejo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
email: sales.support@microsemi.com
www.microsemi.com

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemii. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi and verify the same. The information provided by Microsemi does not grant, explicitly or implicitly, to any patty any pattern tights, licenses, or any other IP inglish, whether with regard to such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any patty to independent or any pattern tight by such information. Information provided by such information. Information provided by such information. Information provided by such information.

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and senice marks are the property of their respective owners.