

HMC368LP4 / 368LP4E

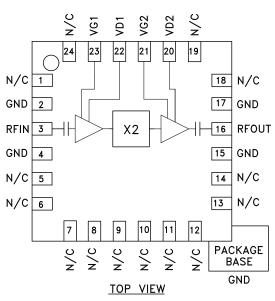
v03.0705

SMT GaAs PHEMT MMIC AMP-DOUBLER-AMP, 9 - 16 GHz OUTPUT

Typical Applications

- Microwave Radios & VSAT
- Fiber Optic Infrastructure
- Military Communications & Radar

Features


Output Power: +15 dBm

Wide Input Power Range: 0 to +10 dBm 100 kHz SSB Phase Noise: -140 dBc/Hz

+5V @ 75 mA Supply

16 mm² Leadless QFN SMT Package

Functional Diagram

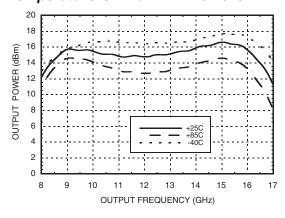
General Description

The HMC368LP4 & HMC368LP4E are miniature amp-doubler-amps utilizing GaAs PHEMT technology in 4 x 4 mm leadless surface mount packages. When driven by a +2 dBm signal, the multiplier provides +15 dBm typical output power from 9 to 16 GHz. The Fo and the 3Fo isolations are 18 dB typical. The low additive SSB phase noise of -140 dBc/Hz at 100 kHz offset helps the user maintain good system noise performance. The HMC368LP4(E) is ideal for use in LO multiplier chains allowing reduced parts count vs. traditional approaches.

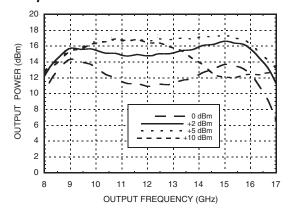
Electrical Specifications, $T_{\Delta} = +25^{\circ}$ C, Vd1 = Vd2 = +5.0 Vdc, +2 dBm Drive Level

Parameter	Min.	Тур.	Max.	Units
Frequency Range, Input		4.5 - 8.0		GHz
Frequency Range, Output	9.0 - 16.0		GHz	
Output Power	12	15		dBm
Fo Isolation (with respect to output level)		18		dB
3Fo Isolation (with respect to output level)		18		dB
Input Return Loss		10		dB
Output Return Loss		10		dB
SSB Phase Noise (Fout = 13 GHz, 100 kHz Offset) Pin = +2 dE	m	-140		dBc/Hz
Supply Current (Idd)*		75		mA

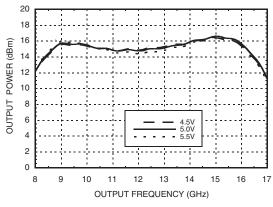
^{*}Adjust Vg1, Vg2 between -2V to 0V to achieve Idd = 75 mA typical

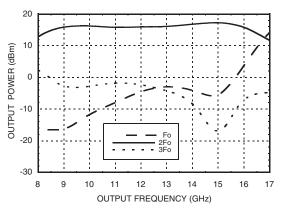


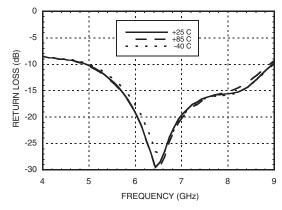
v03.0705

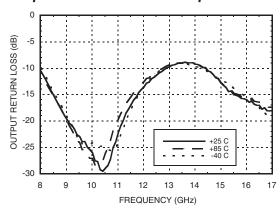


SMT GaAs PHEMT MMIC AMP-DOUBLER-AMP, 9 - 16 GHz OUTPUT


Output Power vs. Temperature @ +2 dBm Drive Level

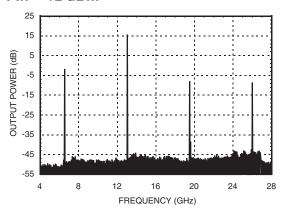

Output Power vs. Drive Level


Output Power vs. Supply Voltage @ +2 dBm Drive Level

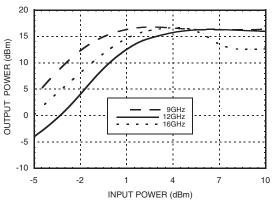

Isolation @ +2 dBm Drive Level

Input Return Loss vs. Temperature

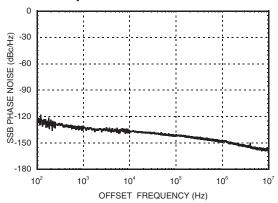
Output Return Loss vs. Temperature



v03.0705



SMT GaAs PHEMT MMIC AMP-DOUBLER-AMP, 9 - 16 GHz OUTPUT


Output Spectrum @ Fin = 6.5 GHz, Pin = +2 dBm

Output Power vs. Input Power @ Three Frequencies

SSB Phase Noise Performance, Fout = 13 GHz, Input Power = +2 dBm

HMC368LP4 / 368LP4E

v03.0705

SMT GaAs PHEMT MMIC AMP-DOUBLER-AMP, 9 - 16 GHz OUTPUT

Absolute Maximum Ratings

RF Input (Vdd = +5V)	+20 dBm
Supply Voltage, Vd1, Vd2	+6.0V
Gate Bias Voltage (Vg1, Vg2)	-4 to 0 Vdc
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 12.5 mW/°C above 85 °C)	812 mW
Thermal Resistance (junction to ground paddle)	80 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vdd

Vdd (V)	Idd (mA)
4.5	73
5.0	75
5.5	77

Note: Amp-Doubler-Amp will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

Outline Drawing

BOTTOM VIEW -.016 [0.40] REF .012 \[0.30 \] .007 \[0.18 \] .008 [0.20] MIN 19 PIN 1 HNNN XXXX 13 EXPOSED GROUND PADDLE LOT NUMBER MUST BE CONNECTED TO RF/DC GROUND **SQUARE** 0.05

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

.003[0.08]|c

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC368LP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H368 XXXX
HMC368LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H368 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

SEATING PLANE

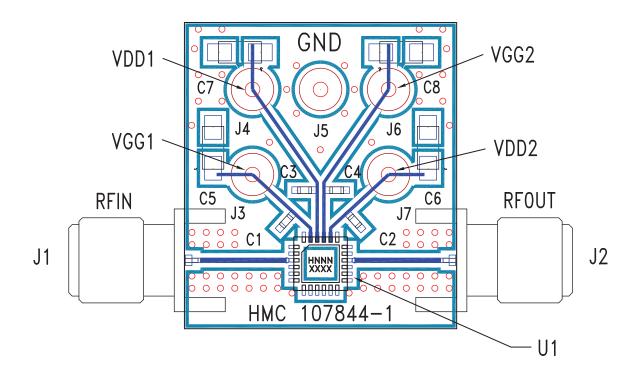
-C-

v03.0705

SMT GaAs PHEMT MMIC AMP-DOUBLER-AMP, 9 - 16 GHz OUTPUT

Pin Description

Pin Number	Function	Description	Interface Schematic
1, 5-14, 18, 19, 24	N/C	No Connection. These pins may be connected to RF ground. Performance will not be affected.	
3	RFIN	Multiplier Input. AC Coupled. No external DC blocks required.	RFIN ○──
2, 4, 15, 17	GND	All ground leads and ground paddle must be soldered to PCB RF/DC ground.	O GND
16	RFOUT	Multiplied Output. AC coupled. No external DC blocks necessary.	— —○ RFOUT
20, 22	Vd2, Vd1	Drain supply voltage 5V ± 0.5V.	oVd1,Vd2
21, 23	Vg2, Vg1	Gate supply voltages. Adjust between -2 Vdc to 0 Vdc to achieve 75 mA drain current.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\


HMC368LP4 / 368LP4E

v03.0705

SMT GaAs PHEMT MMIC AMP-DOUBLER-AMP, 9 - 16 GHz OUTPUT

Evaluation PCB

List of Materials for Evaluation PCB 107846 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J7	DC Pin
C1 - C4	100 pF capacitor, 0402 Pkg.
C5 - C8	2.2 µF capacitor, case size A
U1	HMC368LP4 / HMC368LP4E Amp-x2-Amp
PCB [2]	107844 PCB

[1] Reference this number when ordering complete evaluation PCB $\,$

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. The evaluation circuit board shown is available from Hittite upon request.